If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5+40t-16t^2=0
a = -16; b = 40; c = +5;
Δ = b2-4ac
Δ = 402-4·(-16)·5
Δ = 1920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1920}=\sqrt{64*30}=\sqrt{64}*\sqrt{30}=8\sqrt{30}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-8\sqrt{30}}{2*-16}=\frac{-40-8\sqrt{30}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+8\sqrt{30}}{2*-16}=\frac{-40+8\sqrt{30}}{-32} $
| -115=-11x-60 | | p^2=4p+28 | | 4(1-8k)=-252 | | 11=y+11/2 | | -7=a/2-3 | | x/12+8=11 | | 4x+9=2x+5= | | 3*u*u-5*u=-2*u | | -9(u-6)=7u+6 | | 5x2+x=0 | | 2+d/4=-4 | | −6(s+7)=10(3−s) | | 15-(x-2)=17-x | | 9p+4p=91 | | -9w+2=-4(w+7) | | 1.94x-10/8x+4.32=2(1.15+85)/5 | | 4x-3x+45=-36 | | 12/x=16/x+2 | | 3y+1y=2 | | 10.3r=1.3 | | -11/9n+11/9=22 | | 30/a-2;a=6 | | 2x-4=15+x | | 5.2(x-1.75)=-10.4 | | -11/3(1/3n+1/3)=22 | | 1/2(4x+6)-9=110 | | 100-x=75+2x | | 3x-3x-8=7 | | x-4=15+x | | 1/x+4=6 | | 3m;m=1/6 | | 3s+10=45 |